

Biogas Dehumidification System

Skid-Mounted Packages for Biogas and Landfill Gas Cooling Applications

Biogas, originating from biomass, sewage plants and landfill sites is gaining increasing worldwide importance as a recognised renewable energy source. Generally, biogas is saturated with water vapour and contains other impurities which, when used as fuel, must be removed to prevent corrosion and damage to equipment and systems and improve cogeneration unit efficiency.

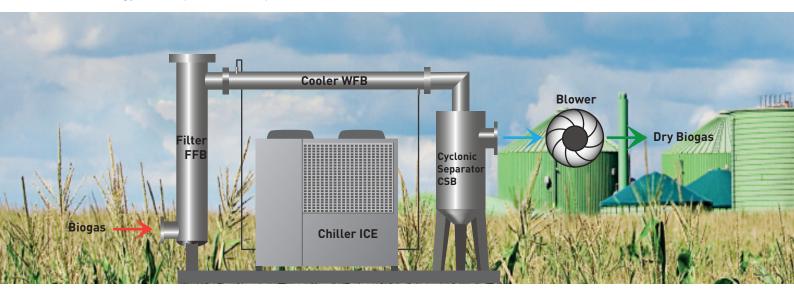
Biogas is primarily composed of methane and carbon dioxide with smaller amounts of hydrogen sulphide and ammonia. Trace amounts of other gases like hydrogen, nitrogen or carbon monoxide are also present in the biogas. Usually the mixed gas is saturated with water vapour and may contain dirt particles.

The selection of effective biogas treatment equipment is therefore particularly important, both in optimising the cogeneration of electrical and thermal energy, making the most of the available renewable energy, and reducing energy consumption and operating costs to a minimum.

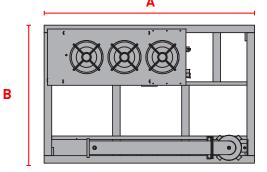
Parker's solution is to dry the gas, firstly by cooling using a water-cooled heat exchanger working with an air-cooled water chiller and secondly, by removing the condensed water with a cyclonic water separator. The cooled gas can then be reheated to reduce the relative humidity and thus meet the technical demands of gas engines, turbines and other downstream equipment such as the Parker PpTek Siloxane Removal System and Biogas Upgrading System components

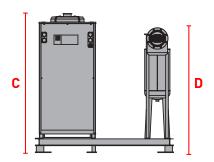
Product Description

- The Parker Biogas Dehumidification System is a compact, robust and easy to handle plug & play gas conditioning package ensuring significant cost savings in investment, management and operation
- Available in a wide range of sizes from 50 Nm³/h to 1500 Nm³/h, the Parker system has performances and flow rates aligned with typical biogas plant designs and CHP capacities
- All gas-side components are constructed from stainless steel (AISI304 or AISI316L) with additional pickling and passivation treatment in order to ensure highly reliable and continuous operation even in the harshest site conditions


- Designed using thermodynamic and fluid dynamic principles to ensure a high efficiency heat exchange and separation whilst maintaining low pressure drop
- Flexibility to use a wide range of cooler/ chiller combinations ensures the closest match to customer requirements thus delivering constant dewpoint performance regardless of fluctuations in operating conditions.

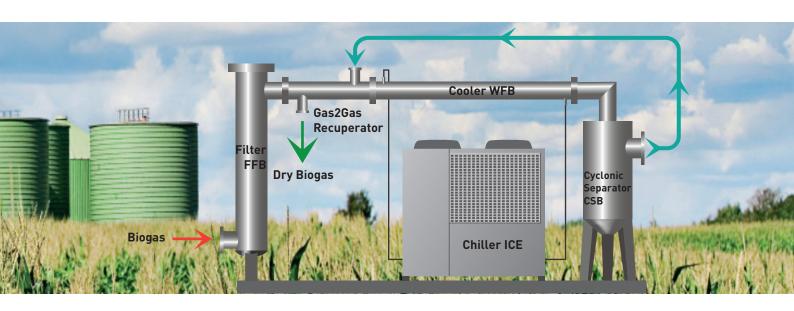
ENGINEERING YOUR SUCCESS.


Biogas Dehumidification System


The standard Biogas Dehumidification System cools biogas to a user defined dew point, using a Hypercool BioEnergy heat exchanger working with Hyperchill BioEnergy chiller and removing the condensed water with the Hypersep BioEnergy separator. Insulation, Hyperfilter BioEnergy and Hyperdrain BioEnergy can be provided as options. This configuration is designed for installations where a blower is installed downstream of the Dehumidification System, taking advantage of its position to increase the temperature of the biogas and thus decrease its Relative Humidity.

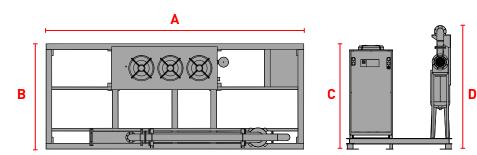
Biogas Dehumidification System													
Model	Biogas Flow Rate (m ³ /h)	Gas inlet * connections	Gas outlet connections	Condensate removed (kg/h)	A (mm)	B (mm)	C (mm)	D* (mm)	Weight* (kg)				
skd60-007	60	DN80	DN50	3,1	2500	1700	1615	1640	558				
skd105-010	105	DN80	DN50	5,3	2500	1700	1615	1640	638				
skd165-014	165	DN125	DN80	8,4	2500	1700	1615	1635	690				
skd265-024	265	DN125	DN80	13,5	2500	1700	1615	1635	795				
skd240-029	240	DN125	DN80	12,8	3300	1800	1594	1695	880				
skd360-039	360	DN200	DN125	19,2	3300	1800	1562	1975	941				
skd510-057	510	DN200	DN125	27,2	3300	1800	1579	1975	1166				
skd720-076	720	DN200	DN125	38,4	3350	2200	2214	1995	1451				
skd1110-116	1110	DN300	DN200	59,2	3350	2200	2214	2102	1732				
skd1620-116	1350	DN300	DN200	71,6	3350	2200	2214	2102	1788				

Performances refer to operation with clean cooler and separator, gas flow rate at 20 °C/1 bar_g. Nominal working conditions: 60 % CH_4 , 40 % CO_2 , gas inlet temperature 40 °C saturated, refrigerant inlet water temperature 1 °C, ambient temperature 35 °C, gas outlet temperature at nominal conditions 8 °C (from model skd60-007 to model skd265-024) and 4 °C (from model skd240-029 to model skd1620-116). Average pressure drop without filter 11 mbar +/-2 for all models. *Data refer to skid without filter.



Biogas Dehumidification System

The Biogas Dehumidification System with 'Gas-2Gas' Recuperator BioEnergy cools biogas to a user-defined dew point and reheats the gas to a Relative Humidity lower than 50%. Insulation, Hyperfilter BioEnergy and Hyperdrain BioEnergy can be provided as options. with 'Gas2Gas' Recuperator


This configuration is designed for installations where a blower is installed upstream of the Dehumidification System with the 'Gas2Gas' Recuperator providing free-cooling to save energy and free-heating to reduce the Relative Humidity of the biogas - without the need for auxiliary heating.

Biogas Dehumidification System with 'Gas2Gas' Recuperator													
Model	Biogas Flow Rate (m ³ /h)	Gas inlet * connections	Gas outlet connections	Condensate removed (kg/h)	A B (mm) (mm		C (mm)	D* (mm)	Weight* (kg)				
skd60-007-R	60	DN80	DN40	3,1	3750	1700	1615	1982	703				
skd105-010-R	105	DN80	DN40	5,4	3750	1700	1625	1982	711				
skd165-014-R	165	DN125	DN50	8,5	3750	1700	1615	2040	772				
skd265-024-R	265	DN125	DN50	13,5	3750	1700	1615	2040	785				
skd240-029-R	240	DN125	DN50	12,8	4900	1800	1594	2100	1089				
skd360-039-R	360	DN200	DN100	19,3	4900	1800	1562	2567	1264				
skd510-057-R	510	DN200	DN100	27,3	4900	1800	1580	2567	1391				
skd720-076-R	720	DN200	DN100	38,5	5382	2200	2214	2587	1887				
skd1110-116-R	1110	DN350	DN150	59,4	5382	2200	2214	2878	2394				
skd1620-116-R	1350	DN350	DN150	68,5	5382	2200	2214	2878	2450				

Performances refer to operation with clean cooler and separator, gas flow rate at 20 °C/1 bar_g. Nominal working conditions: 55 % CH4, 45 % CO₂, gas inlet temperature 50 °C (40 °C saturated), gas inlet pressure 75 mbar_g, refrigerant inlet water temperature 1 °C, ambient temperature 35 °C, gas dew point at nominal conditions 8 °C (from model skd60-007 to model skd265-024) and 4 °C (from model skd240-029 to model skd1620-116), gas outlet relative humidity below 50 %.

Bioenergy is renewable energy stored in organic materials such as plant matter and animal waste, known as biomass. The wide variety of biomass fuel sources include agricultural residue, pulp/paper mill residue, urban wood waste, forest residue, energy crops, landfills and animal waste. Anaerobic digestion is the process that occurs when bacteria decompose organic materials in the absence of oxygen to generate biogas.

Biogas is primarily composed of methane and carbon dioxide with smaller amounts of hydrogen sulphide and ammonia. Trace amounts of other gases like hydrogen, nitrogen or carbon monoxide are also present in the biogas. Usually the mixed gas is saturated with water-vapour and may contain dirt particles. For biogas as a fuel, most of the impurities have to be removed, as they can cause contamination, deposits and damage to equipment. In particular, biogas needs to be dried by cooling it to temperatures close to 5°C, using water-cooled heat exchangers fed by water chillers. Hyperchill Bioenergy is a key component in this biogas treatment process.

Extremely compact and easy to use, Hyperchill Bioenergy ensures an accurate control of the water temperature. It has been specifically designed for Biogas applications and provides safe and reliable operation in the harshest of environments, typically found in Anaerobic Digesters and landfill Biogas production areas.

Benefits

- Special protective treatment of condensers and copper piping to ensure reliable operation in the most aggressive of ambient atmospheres at biogas plants and landfill sites.
- Pump and tank installed inside the chiller provides a compact and easy to install solution.
- Precise water temperature control with high working limits and low running costs.
- Non-ferrous hydraulic circuit on ICEP-E range enhances the reliable operations maintaining the quality of the coolant ensuring stable working conditions.
- Large built-in water tank that provides a large thermal mass/ storage capacity thus reducing the number of refrigerant compressor stop/starts and short cycling and thereby increasing the compressor and chiller lifetime.

- Designed to provide cooling water where low temperature water is required as standard (air conditioning units do not normally need to provide water at less than 10°C).
- Use of compliant scroll compressors designed specifically for high efficiency and long life in industrial applications.
- Use of Safety Class A1 non flammable refrigerant in compliance with F-Gas Regulation.
- Low ambient speed-control on fanmotor ensures constant performances at different temperatures, long lifetime of the fans and a reduction in absorbed power when ambient temperature is low.
- Maximum working ambient temperature up to 48°C for ICEP-E models, up to 45°C for ICE models, prevents downtime even under extremely harsh conditions.

ENGINEERING YOUR SUCCESS.

Hyperchill BioEnergy

The performance of biogas as a fuel depends on effective cooling and treatment.

Saturated biogas contains water and impurities that need to be removed to avoid damage to equipment and to reach more efficient combustion, whilst maintaining the desired dew point.

Product Features

- Water and refrigerant manometers permit full control of the working conditions.
- Microprocessors: allow complete control of the unit parameters.
 Proprietary software provide a wide range of programming and remote monitoring options.
- Compliant scroll compressors: with less moving parts and compliant technology, they provide excellent efficiency, high reliability, and very low noise levels.
- Air cooled with axial fans: suitable for outdoor installation.
- Water pump (std 1,5 bar): available with different head pressures to suit the end-users application. Configurable as a twin-system, for 100% redundancy.
- Mesh filters: condenser protection against dirt and contamination, reduces maintenance costs and the risk of downtime.

Options and Accessories

- Special and multiple-pumps: higher head pressure available to suit different hydraulic circuits. Double stand-by pump for greater reliability.
- Antifreeze heating: avoids freezing when the unit is switched off. Can also be used as a heater to warm up the system.

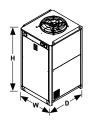
- Evaporator: located inside the water tank from ICE150 - reduces the overall dimension of the unit, increases the efficiency and improves temperature control.
- Water by-pass: protects the pump and supplies constant flow to the evaporator, avoiding alarms and freezing.
- Water tank: stainless steel up to ICEP120E generously dimensioned to guarantee high reliability and improved temperature-control.
- Models from ICEP022E to ICEP120E are designed with fan control to work as standard in low ambient temperatures down to -10°C.
- Maximum ambient temperature 48°C up to ICEP120E, 45°C from ICE150.
- MODBUS RTU interface fitted on ICEP-E models; optional for ICE models

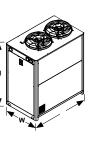
- Water fill-kits: pressurized, automatic or ambient manual kits, for water filling in any installation.
- Remote control kits: base version for remote ON/OFF and general alarm monitoring. Advanced version for complete remote unit management.
- Wheels (up to ICEP015E BioEnergy): for ease of transport.
- Control panel cover: for additional display protection from aggressive ambient.

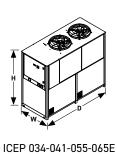
info@teamairpower.com

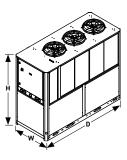
Technical Data

Model		ICEP-E									ICE							
		008E	011E	015E	022E	027E	034E	041E	055E	065E	080E	100E	120E	150	183	230	310	360
Cooling capacity ¹	kW	7,8	11,1	15,0	21,9	26,6	33,1	40,2	56,3	65	78,3	103,7	120,6	149,2	182,3	228	305,1	359,7
Total abs. power ¹	kW	1,6	2,3	3,6	5,0	5,7	6,7	8,3	12,8	15,3	18,5	24,2	29,8	38,8	48,1	61,7	71,17	87,9
SEPR HT ²		4,79	4,78	4,10	4,40	4,64	4,95	4,82	4,55	4,25	4,25	4,10	4,04	5,35	5,04	5,02	5,51	5,73
Cooling capacity ³	kW	4,5	6,5	8,8	12,7	14,9	18,2	22,6	32,0	36,9	44,8	60,4	72,1	85,3	104,2	130,2	180,5	205,7
Tota abs. power ³	kW	1,6	2,4	3,7	5,0	6,0	7,3	9,0	13,7	16,0	19,3	24,7	29,0	32,5	41,4	55,1	63,4	83,2
Power Supply	V/ph/Hz	400/3/50 400/3/50																
Protection index							IP	54						IP54				
Refrigerant							R5	13A							R407C			
Compressor																		
Туре							hermet	ic scroll						hermetic scroll				
Compressors/ circuit					1/1				2,	/1		2/2		4/2				
Max.abs.power (1 compressor)	kW	2,5	3,5	5,4	6,5	8,7	10,8	11,3	10,8	11,3	13,1	17,9	22,1	11,1	13,7	16,8	23,3	28,7
Axial fans																		
Quantity	no.	1 2				3				2 3 4				4				
Max.abs. power (1 fan)	kW	0,23	0,23	0,46	0,46	0,46	0,77	0,77	0,77	0,77	0,77	0,77	0,77	2	2	2	2	2
Air flow	m³/h	3325	3325	5028	7823	10865	17337	17057	17057	17110	26832	26082	26082	47000	46000	66000	88000	88000
Pump P15																		
Туре							Centr	rifugal							(Centrifuga	ıl	
Max.abs.power	kW	0,7	0,7	0,7	0,7	0,9	0,9	0,9	1,0	1,0	1,4	1,4	1,4	1,5	1,5	2,2		
Water flow (nom./ max) ¹	m³/h	1,3/ 5,4	1,9/ 5,4	2,6/ 5,4	3,8/ 5,4	4,6/ 10,8	5,7/ 10,8	6,9/ 10,8	9,7/ 18	11,2/ 18	13,6/ 24,3	17,8/ 24,3	20,7/ 24,3	25/ 44	30/ 44	39/ 48)n uest
Head pressure (nom./max) ¹	m H2O	20/ 15	19/ 15	18,8/ 15	17/ 15	19/ 12,5	17,8/ 12,5	16/ 12,5	15,7/ 10,4	15/ 10,4	14,7/ 9,2	13/ 9,2	11,5/ 9,2	12/ 6	10/ 6	14/ 8	Request	
Weights and Dimensions																		
Width	mm	756	756	756	756	756	856	856	856	856	1050	1050	1050	1287	1287	1287	1500	1500
Depth	mm	806	806	806	1206	1206	1956	1956	1956	1956	2500	2500	2500	3000	3000	3260	4200	4200
Height	mm	1430	1430	1430	1430	1430	1680	1680	1680	1680	2012	2012	2012	2298	2298	2298	2240	2240
Connections in/out	in	3⁄4"	3⁄4"	3/4"	1"	1"	1½"	1½"	1½"	1½"	2"	2"	2"	2½"	2½"	2½"	4"	4"
Tank capacity	1	65	65	65	100	100	200	200	200	200	400	400	400	1000	1000	1000	400	400
Weight (axial)⁴	kg	165	175	180	235	250	485	510	580	595	875	1010	1030	1500	1800	2100	2900	2900
Noise level																		
Sound pressure (axial) ⁵	dB(A)	50	50	51	52	52	53	54	55	55	58	59	59	62	62	64	65	65


1) At water in/out temperature 20/15°C, glycol 0%, either 25°C ambient temperature.


2) Value calculated in accordance with the European regulation (EU) 2016/2281 with regards to Ecodesign requirements for high temperature process chillers


3) At water in/out temperature 5/1°C, glycol 10%, ambient temperature 35°C.


4) Includes refrigerant charge and pallet (version without options and accessories).

5) Sound pressure: average value obtained in free field on a reflective surface at a distance of 10 m from the condensate side of the machine and at a height of 1.6 m from the unit support base. Values with tolerance ± 2 dB. The sound levels refer to operation of the unit under full load in nominal conditions.

ICEP 008-011-015E

ICEP 022-027

ICEP 080-100-120E

For additional information and support, please contact your local applications engineer.

N.I. Tel: (+44) 28 9448 8588 R.O.I. Tel: (+353) | 457 9266